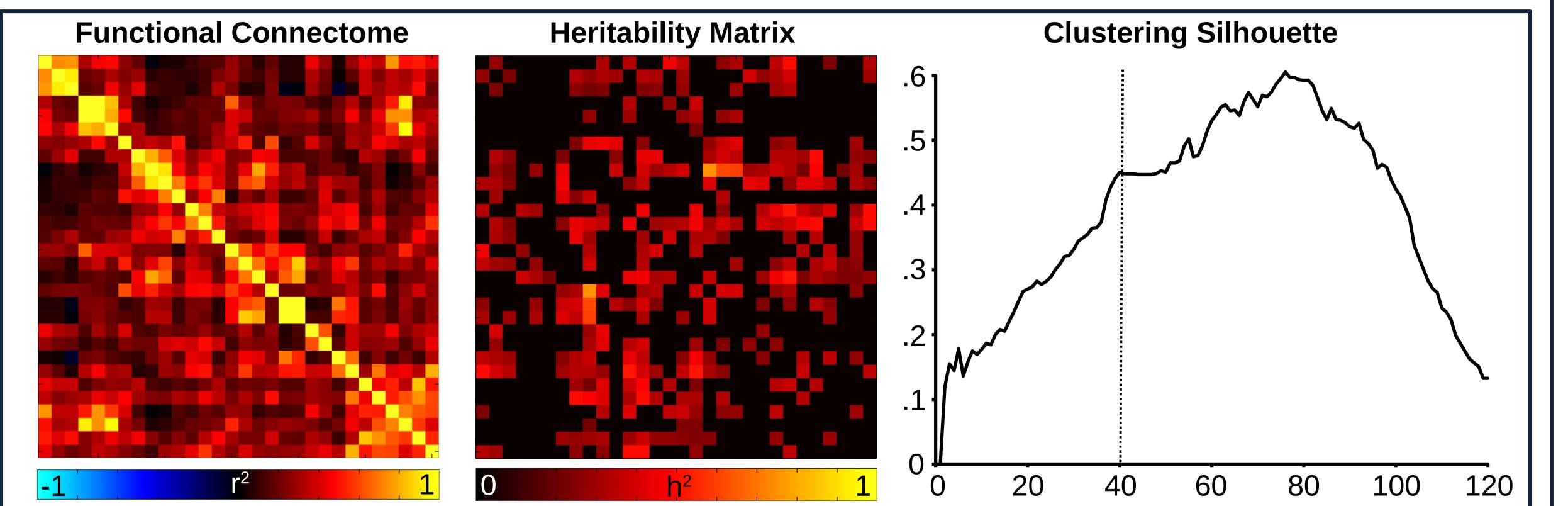
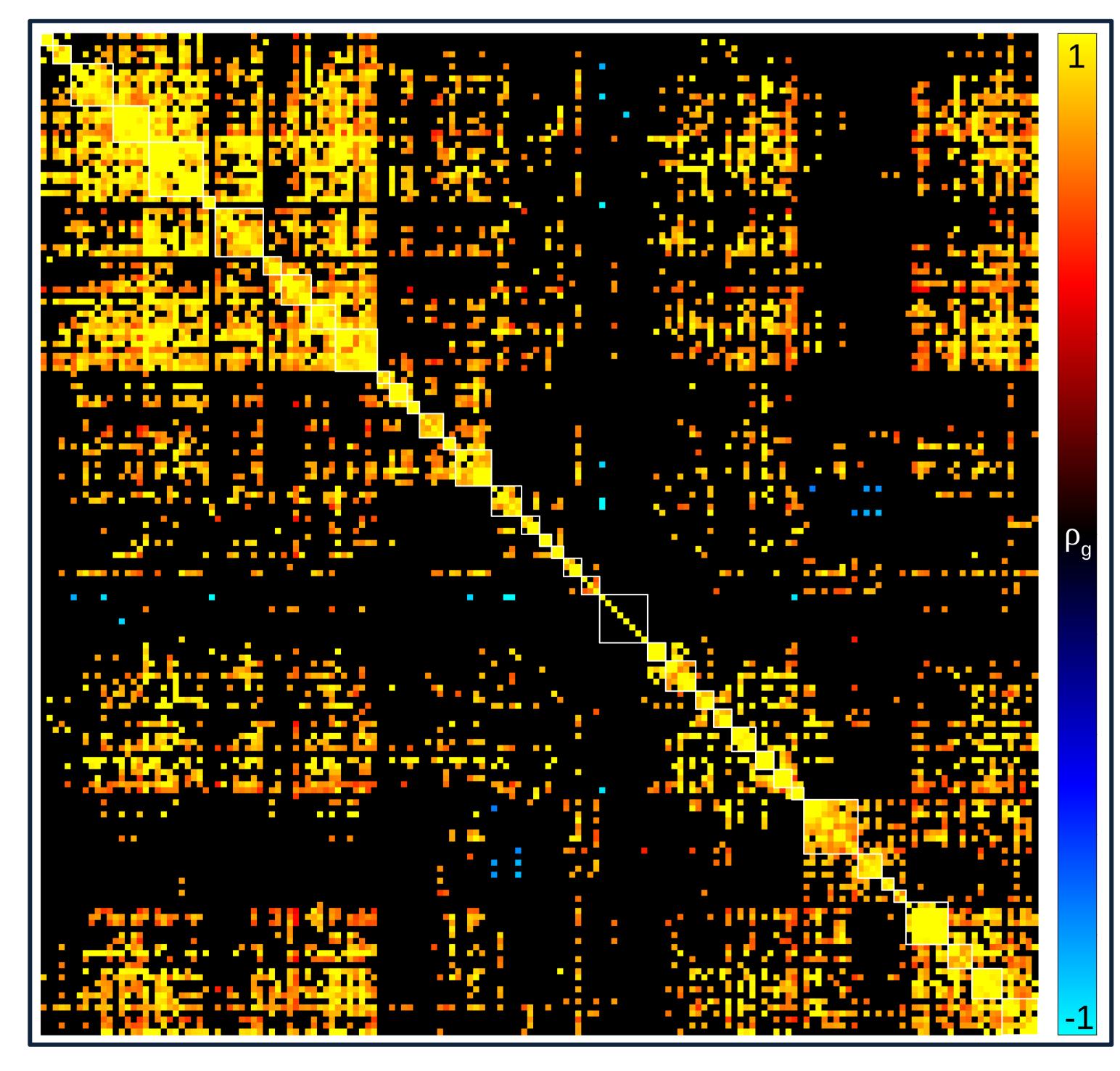


Genetic clustering of the human functional connectome


Francois Chouinard-Decorte¹, Pierre Rioux², John Lewis², Clara Moreau⁸, Jack Kent³, Melanie Carless³, Joanne Curran³, Tom Dyer³, Harald Göring³, Rene Olvera³, Peter Fox⁴, Laura Almasy³, Ravi Duggirala³, John Blangero⁵, Pierre Bellec⁶, David Glahn⁷, and Alan Evans¹

1. Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada. 2. McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada. 3. Department of Genetics, Texas Biomedical Research Institute, University of Texas Health Science, San Antonio, TX, USA. 4. Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX, USA. 5. Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA. 6. Geriatric Institute Research Center, Universite de Montreal, QC, Canada. 7. Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA. 8. CHU Ste Justine, Universite de Montreal, QC, Canada.

INTRODUCTION	dCS-CALC DOC-sPL PCL-CALC
 Functional connectivity is a heritable trait. 	PCL-CALC sTS-mCC CALC-mCC
 Genetic factors can influence more than one trait at once. 	mPFC-mdIPFC PCL-mTL mdIPFC-STRI
• We wanted to map shared genetic influences in the human functional connectome.	mTL-SMA SMA-mTC mdIPFC-IIFG adIPFC-IIFG
	adIPFC-IIFG


METHODS

- <u>Dataset</u>: 653 subjects from extended families of Mexican American ancestry (GOBS study).
 <u>Imaging data</u>: rs-fMRI using a gradient-EPI BOLD sequence (TE/TR = 30/3,000 ms; flip angle = 90°; isotropic 1.72 mm2) over 7.5 minutes. Subjects were instructed to lie with their eyes open and try not to fall asleep.
- <u>Data processing</u>: functional image processing done using the NIAK software (v.7.2.2.0)
 <u>Analysis</u>: Genetic analyses, covarying for age, sex and FD, carried out using the SOLAR software. Clustering performed using HAC-Ward in R (v. 3.3.0). All results corrected using FDR.
- Participants provided written informed consent, the study was approved by IRBs at the participating institutions.

Figure 1. Matrices of (A) average functional connectivity, (B) heritability and (C) silhouette analysis of the genetic clustering of heritable functional connections.

Results

• Genetic correlations are strong: many pairs of connections exhibit full pleiotropy.

 Shared genetic influences are widespread: 22% of possible genetic correlations are significant.

 Genetic correlations are also found between clusters of shared genetic influence.

Figure 3. Dendrogram of the

hierarchical clustering of heritable

functional connections. Branches

are colored according to the 40

cluster threshold.

Figure 2. Matrix of significant genetic correlations among heritable functional connections. 40 clusters are highlighted on the diagonal.

CONCLUSIONS

- The same genetic factors influence functional connections both within and between resting-state networks.
- Genetic liability to common disorders might involve groups of connections under shared genetic influences.

Negative genetic correlations often involve the cerebellum.

References

Almasy, L., Blangero, J., 1998. Multipoint quantitative-trait linkage analysis in general pedigrees. Am. J. Hum. Genet. 62, 1198–1211. doi:10.1086/301844

Bellec, P., Rosa-Neto, P., Lyttelton, O.C., Benali, H., Evans, A.C., 2010. Multi-level bootstrap analysis of stable clusters in resting-state fMRI. NeuroImage 51, 1126–1139. doi:10.1016/j.neuroimage.2010.02.082

Glahn, D.C., Winkler, A.M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M.A., Curran, J.C., Olvera, R.L., Laird, A.R., Smith, S.M., Beckmann, C.F., Fox, P.T., Blangero, J., 2010. Genetic control over the resting brain. Proc. Natl. Acad. Sci. U. S. A. 107, 1223–1228. doi:10.1073/pnas.0909969107

Acknowledgements

Financial support for this study was provided by NIMH grants MH0708143 (PI: DCG), MH078111 (PI: JB), and MH083824 (PI: DCG & JB). CIHR operating grant MOP 37754 (PI: ACE). Authors declare no competing financial interests in relation to the described work.

Website: http://mcin.ca